
1 INTRODUCTION  

 

While the finite element method is now widely used 

in numerous applications of engineering and the 

sciences, it is also recognized that this use is bound 

to increase significantly. For example, there is large 

potential of a much broader application in computer-

aided design and in the analysis of geometries 

obtained by digital scans, for a wide use in the fields 

of engineering and the medical sciences, for use 

with and in artificial intelligence, and in efforts of 

homeland security. 

The foundations and fundamental procedures of 

finite element procedures are well established and 

have been published widely (see e.g. Bathe 2014a). 

However, the ease of use of finite element 

procedures should be much increased and more 

effective finite element procedures are greatly 

needed. Hence, research is performed to increase the 

effectiveness and efficiency of finite element 

schemes and to render the use of finite element 

procedures less human-intensive.  

Some basic areas in which more efficient 

techniques are needed are the dynamic analyses of 

structures, specifically transient step-by-step 

solutions and frequency/ mode shape calculations, 

the analyses of shells and three-dimensional solids, 

and meshing techniques to alleviate the human effort 

required for a finite element simulation.  

In this paper, we briefly review some of our recent 

research accomplishments to advance the finite 

element schemes in these areas. In our developments 

we focus on the reliability and efficiency of the 

procedures, and on their possible use in the analyses 

of complex structures. We apologize that due to lack 

of space  we exclusively refer to our papers, in 

which however many references to other works are 

given.  

 

2 ADVANCES FOR DYNAMIC ANALYSES 

 

To achieve progress in the simulation of dynamic 

phenomena, we have increased significantly the 

efficiency of the subspace iteration method to 

calculate frequencies and mode shapes and enhanced 

an implicit time integration scheme. 

 

2.1 The enriched subspace iteration method 

The original subspace iteration scheme (Bathe 2014a 

) for the calculation of frequencies and mode shapes 

is widely used in engineering and the sciences. We 

focused our research on reaching a significant 

speed-up of the solution scheme by using the 

"turning of the iteration vectors" in each iteration 

step  (Kim & Bathe 2017). 

Figure 1 illustrates the speed-up of the solution 

scheme. An important ingredient is that the subspace 

iterations can be parallelized in SMP and DMP 

(Bathe 2013). Figure 2 depicts a typical speed-up in 

solution time using the schemes when the 

computations are parallelized.  

The same concept can also be used to enrich the 

method further by using the "turning of the turning 

vectors", thus doubly enriching the scheme, reaching 

however, in general, not a further increase in speed 

as much as shown in Fig. 1 (Wilkins & Bathe 2019). 
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Figure 1 CPU time for calculating the smallest frequencies / 
mode shapes using the Bathe subspace iteration methods of a 
beam discretized by 8-node brick elements (number of degrees 
of freedom = 1,520,493, half-bandwidth = 507), single core 
Intel 2.4 GHz CPU, column solver, see  Kim & Bathe 2017.  
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Figure 2 Time for calculating the lowest 100 frequencies / 
mode shapes of a bolted wheel model using the Bathe subspace 
iteration methods; number of degrees of freedom = 1,495,257 
with 3,374 contact equations. ADINA results using Linux WS, 
Intel 3.2 GHz CPU. 

 

2.2 Generalizing the Bathe implicit time integration 

scheme 

The implicit time integration scheme proposed by 

Bathe (Bathe 2007) has been found to be effective in 

many linear and nonlinear analyses, see e.g. Kroyer, 

Nilsson & Bathe 2016. The procedure integrates 

accurately the response in the frequencies that 

should be integrated and cuts out spurious response, 

thus increasing the accuracy of solutions and also 

the convergence properties in the Newton-Raphson 

iterations of nonlinear analyses. A valuable asset of 

the scheme is that no parameters need be set (Bathe 

& Noh 2012, Noh & Bathe 2018). Although two 

sub-steps are used for each time step t∆ , of course 

only the stability and cost of the overall solution 

decide whether the scheme is efficient. We also refer 

to Noh  & Bathe 2013 for an explicit time 

integration scheme based on using two sub-steps for 

each time step.  

 To generalize the Bathe implicit time integration 

procedure, we proposed the 1 2/β β - Bathe time 

integration scheme (Malakiyeh, Shojaee &  Bathe 

2019). In this procedure the two parameters 1β  and 

2β can be set to obtain the originally proposed 

scheme and a method more effective in certain 

applications, specifically when the response in high 

frequencies should not be cut out and in wave 

propagation solutions. Figure 3 gives results and 

illustrates that, in this wave propagation analysis, as 

the CFL number = /c t x∆ ∆  (where c is the 

analytical wave speed and x∆ the element length)  
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Figure 3 Solution of 1D wave propagation, clamped bar 
idealized by one thousand  2-node truss elements, 1 2/β β - 
Bathe method. 
 
is decreased, increasingly more accurate solutions 

are obtained. This is an important property for 
practical analyses.  



    Another approach is to use the spectral radius at 

very large time steps, ∞ρ , as a parameter, as in the 

∞ρ - Bathe scheme (Noh & Bathe 2019). In this 

scheme only ρ∞   is employed to choose the curves 

of the spectral radius and amplitude decay, see Fig. 
4. The splitting ratio of the time step is chosen for 

optimal amplitude decay. This scheme and the 

1 2/β β -Bathe scheme encompass the trapezoidal 

rule of time integration as a special case. 

 
Figure 4 Spectral radii of approximation operator of the ρ∞ -
Bathe method when 0ξ =  for various values of  ρ∞   ; 
γ denotes the  splitting ratio of the time step and is set in the 
time stepping to be optimal for the selected ρ∞ . 

 

3 ADVANCES FOR SHELL ANALYSES 
 

Although we started to focus research efforts already 
decades ago on the development of shell elements, 

and the MITC4 shell element formulation (MITC is 
an acronym for "mixed interpolation of tensorial 

components" and the "4" refers to "4 nodes") 
proposed in 1984 is widely used in academia and 

commercial programs, we only recently reached a 4-
node element, which shows an almost optimal 

behavior in membrane and bending-dominated 
conditions when using uniform and distorted meshes 

see Ko, Lee & Bathe 2017a. 
 Figure 5 shows the analysis results obtained in the 

analysis of a hyperboloid shell in membrane-
dominated and in bending-dominated conditions. 

The MITC4+ element performs remarkably well 
even when distorted meshes are used. It is important 

to employ in the result evaluations an appropriate 
norm to measure the solution errors and we use the 

s-norm (Hiller & Bathe 2003). We also proposed a 
new triangular shell element, see Lee, Lee & Bathe 

2014 and Jun, Yoon, Lee & Bathe 2018. 

 

4 ADVANCES FOR ANALYSES OF TWO- 
AND THREE-DIMENSIONAL SOLIDS 

 
Based on the MITC technique, we have recently also 

proposed a new 4-node element for two-dimensional 

and a new 8-node "brick element" for three-
dimensional (3D) analyses of solids (Ko, Lee & 

Bathe 2017b and Ko & Bathe 2018a). 
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Figure 5  Convergence curves for  hyperboloid shell problems; 
clamped membrane-dominated  with (a) graded regular and (b) 
distorted meshes; free bending-dominated with  (c) graded 
regular and (d) distorted meshes (see Ko, Lee & Bathe 2017a). 



 
    To formulate the 3D 8-node element we are using   

a thought experiment: we consider a stable truss 
structure with a minimum number of 2-node truss 

elements to have stability, see Fig. 6. The center of 
each truss element gives a point from which to 

interpolate the truss strain component over the 8-
node brick element domain. A minimum number of 

truss elements is used to avoid locking, and a 
stabilization is activated in nonlinear analysis. The 

finally-reached brick element is stable and efficient 
and in geometrically nonlinear analyses does not 

show any hour-glassing, like do the elements using 
incompatible modes, see Ko & Bathe 2018a and 

Sussman & Bathe 2014, e.g. Fig. 7.  
 While the element formulation is largely based on 

physical reasoning, we also performed a numerical 
study of the inf-sup conditions regarding the element 

performance in possible shear and membrane 
locking, and locking in the analysis of incompress-

ible media (Ko & Bathe 2018b). For the solution of 
incompressible media we use the u/p formulation 

(Bathe 2014a), see Fig. 7. 
 

 

 
 
Figure 6 The 8-node brick element and its representation by a 
truss structure with a minimum number of 2-node truss 
elements to have stability of the truss structure. 
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Figure 7 Cantilever model and solutions obtained, Poisson's 
ratio = 0.0; reference: using 27-node displacement-based 
element, H8: using  8-node displacement-based element, H8I9: 
using 8-node displacement-based element with incompatible 
modes, 3D-MITC8: using new element, 3D-MITC8/1: using 
new element with constant pressure interpolation. 

 

5 THE AMORE PARADIGM 
 

In traditional finite element analysis, a major effort 
by the analyst is frequently required for meshing. To 

drastically reduce the time required for meshing, 
specifically when geometries in CAD or by 3D 

digital scans are available, we proposed the AMORE 
paradigm for Automatic Meshing with Overlapping 

and Regular Elements (Bathe 2016, Bathe & Zhang 
2017 and Bathe 2019). The AMORE scheme shows 

much potential for general finite element analyses, 
see also Zhang & Bathe 2017, Zhang, Kim & Bathe 

2018, and Kim, Zhang & Bathe 2018. 
 The meshing steps in the AMORE scheme of 

analysis are, to immerse the part to be analyzed in a 
grid of cells, Cartesian or other grid that could be 

refined in some areas, to discretize the boundary, 
remove all cells that lie outside this boundary or cut 

the boundary, turn all remaining cells into regular 
finite elements, and, finally, to cover the then 

unfilled space of the domain with overlapping finite 
elements, see Fig. 8. An important point is that these 

overlapping elements are distortion-insensitive. 
Hence the algorithm aims to give non-distorted 

regular elements, which perform optimally because 
they are undistorted, and overlapping elements that 

can be highly distorted and still perform well. The 
overlapping finite elements are formulated using the 

concepts of meshless methods, see e.g. Lai & Bathe 
2016 and Nicomedes, Bathe, Moreira &  Mesquita 

2017, and are also related to the use of interpolation 
covers, see Kim & Bathe 2014. 

 



 
 

(a) 

 
 

(b) 

 
Figure 8  AMORE shown schematically for the analysis of  
a bracket; (a) geometry and (b) mesh used showing 
schematically only some overlapping elements. 

 
Figure 9 shows some analysis results of a wave 

propagation solution in which all elements are 
overlapping (polygonal elements overlap to form 

triangular elements, see Bathe 2019) and in addition 
to the usual polynomials also trigonometric 

functions are used as degrees of freedom, see Kim, 
Zhang & Bathe 2018. Here note that accurate 

solutions are difficult or impossible to obtain of 
complex wave propagations using traditional finite 

elements. 
     Figure 10 shows the analysis of a cantilever plate 

with holes. Here too, the overlapping elements are 
polygonal elements which overlap in triangular 

regions, resulting in the formulation of triangular 
elements that are distortion-insensitive. For the 

analysis results obtained see Zhang, Kim & Bathe 
2018 or Bathe 2019.   

 
 
Figure 9  Snapshots of transverse displacement distributions of 
a quarter of a prestressed  membrane with symmetrically-
placed circular holes at various observation times  
calculated using AMORE.   

  
 

 
 

 
 

 
  
Figure 10 AMORE mesh used in the analysis of a plate; (a) 
Cartesian cells with some cells removed (b) final mesh. 

 
  

6 CONCLUDING REMARKS 
 

Based on our experience in finite element methods 
we expect that the use of finite element methods will 



increase very significantly and research advances are 
still much needed. In this presentation we briefly 

surveyed some of our latest achievements in 
advancing finite element methods for general 

analysis. 
 Some research areas that we did not comment on 

are the huge fields of analysis of fluids and 
multiphysics problems involving solids, fluids and 

electro-magnetic effects (see, regarding some of our 
achievements, Bathe, Zhang & Yan 2014 and Bathe 

2014b) and the analysis of proteins and DNA 
structures, see e.g. Bathe 2014b and Sedeh, Yun, 

Lee, Bathe & Kim 2018. Many advances are still 
needed in these fields and the AMORE scheme is, 

here too, a promising approach to explore. 
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